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Abstract 

In this paper, the numerical analytic solution for the fractional order hyperchaotic system is obtained the step 

homotopy analysis method (SHAM). The fractional derivatives are describing by Caputo's sense. Exact and/or 

approximate analytical solutions of these equations are obtained. An analytical form of the solution within each time 

interval is given which is not possible using standard numerical method. The HAM contains a certain auxiliary 

parameter  h   which provides us with a simple way to adjust and control the convergence region and rate of 

convergence of the series solution. Numerical results reveal that the step homotopy analysis method (SHAM) 

method is a promising tool for the hyperchaotic fractional order systems.  Copyright © acascipub.com, all rights 

reserved.  

Key words: Homotopy analysis method; Hyperchaotic system; fractional order hyperchaotic system; Caputo's 

fractional derivative. 
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 1- Introduction 

 
Fractional differential equations FDEs have found applications in many problems in physics and engineering [1-4]. 

Since most of the nonlinear FDEs cannot be solved exactly, approximate and numerical methods must be used. 

Some of the recent analytical methods for solving hyperchaotic systems has been obtained by different methods, 

such as the the Adomian decomposition method ADM [5-6] and the differential transformation method [7]. 
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Recently, the homotopy analysis method HAM has become one of the most famous techniques to solve such 

nonlinear problem. First proposed in 1992 by Liao [8]-[14], has been successfully applied to solve many problems in 

physics and science. Many researches have applied this method for different classes of differential equations [15-

20].  M. Saad [21] used the idea of time step in the algorithm of HAM to obtain the step homotopy analysis method 

SHAM and applied it to the Newton-Leipnik system. 

Many hyperchaotic systems have been proposed and studied in the last few decades. The main difference between 

the chaotic and hyperchaotic system is the Lyapunov exponent since the chaotic system has one positive Lyapunov 

exponent while the hyperchaotic system has more than one positive Lyapunov exponent. Hongmin et al [22] 

presented the hyperchaotic system as  

D1 xta xtyt,

D2 ytxtytz2
t,

D3 ztb1ytb2ztb3wt,

D4 wtztc wt.   #   
                           (1.1) 

subject to the initial conditions  

x01 , y02 , z03 , w04 .   #   
                      (1.2) 

Where  zyx ,,;1,,,,0 4321     and  w    are the state variables, and the parameters  a   ,  ,1b    

32 ,bb   and  c   are real constants. Bifurcation studies show that when  ,56.0a    0.6,0.1,0.1 321  bbb   

,  8.0c   and  ,95.0   the above system is hyperchaotic 

The aim of this paper is to obtain the solution of the fractional order hyperchaotic system by the SHAM. This 

modification of the standard HAM still contains a certain auxiliary parameter h which provides us with a simple way 

to adjust and control the convergence region by the rate of convergence of the series solution. 

 

 2-Basic definitions 

 
In these sections, we give some definitions and properties of the fractional calculus. Several definitions of fractional 

calculus have been proposed in the last two centuries. There are many books [1-4] that develop fractional calculus 

and various definitions of fractional integration and differentiation, such as Grunwald-Letnikov's definition, 

Riemann-Liouville definition, and Caputo's definition and generalized function approach. For the purpose of this 

paper, the Caputo's definition of the fractional differentiation will be used, taking the advantage of Caputo's 

approach that the initial conditions for fractional differential equation with Caputo's derivatives take on the 

traditional form as for integer-order differential equation. 

Definition 2. 1. A real function  ht, t 0  , is said to be in the space  C, R,   if there exists a real number  

p ,  such that  httph1t,    where  h1t C0,,  and it is said to be in the space C 
n

  if and only 
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if  h
n
 C,n  N.   

Definition 2.2. The Riemann-Liouville fractional integral operator  J

  of order  0,   of a function  

,1,  Ch   is defined as  

                               

Jht 1



0

t

t1hd0

J0htht     2.1
                               (2.1) 

   is the well- known Gamma function. Some of the properties of the operator  
J  , which we will need here, 

are as follows: 

(1)  ),()( thJthJJ     

(2)  ),()( thJJthJJ     

(3)  .
)1(

)1( 



 




 ttJ   

Definition 2. 3. The fractional derivative  )( D   of  )(th   in the Caputo's sense is defined as  

                                  

.  ,0,    ,1for 

,   )()(
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1
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0
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ChtNnnn

dht
n

thD










 








                             (2.2) 

The following are two basic properties of Caputo's fractional Derivative [4]: 

(1) Let  .,1 NnCh n  
  Then  nhD  0,   is well defined and  .1ChD

  

(2) Let  n1 n ,  n  N   and  .1,  

nCh   Then 

                                       .
!

)0()()()( )(
1

0 k

t
hththDJ

k
k

n

k







                                       (2.3) 

 

3. Homotopy analysis method (HAM ) for system of FDEs 

 
Consider the system of differential equations in the following general form  

N iu1t, . . . . . . ,unt0, i1,2, . . . .n,     3.1
                            (3.1) 

with initial conditions at initial value:  

uktck , k 1, . . . , n,
 

where  N i    are nonlinear operators,  t   denotes an independent operator and  uit  are the unknown functions. 

We can construct the following Zeroth-order deformation for  i1,2, . . . .n,    
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1qL iit ;qui 0
tqhiHitN i1t ;q, . . . . . . ,nt ;q,     3.2

        (3.2) 

where  q  0,1  is an embedding parameter,  hi 0   are auxiliary parameters,  Hit0   are auxiliary 

functions,  L i Dt
i
n1 i n  are auxiliary linear operators such that  

L iit0 whenit0.     3.3
                                             (3.3) 

Generally,  
ui 0
t

  are initial guesses, which satisfy the initial conditions and  ti (    );q   are unknown functions 

where  

it ;0ui0t, it ;1uit, i1,2, . . . .n,     3.4
               (3.4) 

 

and  it   ; q   can be expand in Taylor series, i.e  

it ;qui0t
m1



uimtq
m , i 1,2, . . . . n,     3.5

                        (3.5) 

where  

uimt
1
m!


m
it ;q

qm q0 , i 1,2, . . . . n.     3.6

                          (3.6) 

 

If the auxiliary parameters  hi   , the auxiliary functions  Hit,   the initial approximations  ui0t  and the 

auxiliary linear operators  L i   are so properly chosen the series (3.5) converges at  q 1.   then, using (3.4) the 

series (3.5) gives  

uitui0t
m1



uimt, i 1,2, . . . . n.     3.7

                                  (3.7) 

Let us, we define the following vectors  

ui

tui0t,ui1t, ui2t, . . . . . , uint, i1,2, . . . .n.     3.8

                (3.8) 

then differentiating (3.2)  m   times with respect to  q  , setting  0q   and dividing by  m!  , we have the  mth -

order deformation equation  

L iuimtmuim1thiHitR imu1m1
 , u2m1

 , . . . . . . , unm1

,     3.9

        (3.9) 

where  
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R imu1m1
 , u2m1

 , . . . . . . , unm1



1
m1!


m1N i1t ;q, . . . . . . ,nt ;q

qm1
q0 ,     3.10

               (3.10) 

and  

m 
0 m1,

1 m1.
    3.11

                                       (3.11) 

 

Applying the Riemann-Liouville integral operator  iJ


  on both side of Eq. (3.9), and using ( 2.3) The  mth  -order 

deformation equations (3.9) gives  

uimtmuim1tm
j0

n1

uim1

j
0tj

j!
hiHitJ

iR imu1m1
 , u2m1

 , . . . . . . , unm1

,     3.12

     (3.12)  4. 

Application 

To demonstrate the effectiveness of the method, we consider the system of nonlinear fractional initial-value problem 

(1.1) with the initial conditions (1.2) by choosing the linear operators  

L 11t ;qDt
1
1t ;q,

L 22t ;qDt
2
2t ;q,

L 33t ;qDt
3
3t ;q,

L 43t ;qDt
4
4t ;q,   #   

                                       (4.1) 

With the property  L ici0, i1,2,3,4   where  ic   are the integral constant and the nonlinear operators are 

defined as  

N11 ,2 ,3 ,4Dt
1
1 a1 2 ,

N21 ,2 ,3 ,4Dt
2
2 1 23

2 ,

N31 ,2 ,3 ,4Dt
3
3 b12 b23 b34

N41 ,2 ,3 ,4Dt
4
4 3 c4 .

 

Choosing  1)( tH i  for  3,2,1i   and  ,4   the zeros-order deformation equations are  

1qL 11t ;qx0tqh1N11 ,2 ,3 ,4,

1qL 22t ;qy0tqh2N21 ,2 ,3 ,4,

1qL 33t ;qz0tqh3N31 ,2 ,3 ,4,

1qL 44t ;qz0tqh4N41 ,2 ,3 ,4,   #   
               (4.2) 
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where  

1t ;0x0t, 1t ;1xt,

2t ;0y0t, 2t ;1yt,

3t ;0z0t, 3t ;1zt,

3t ;0w0t, 4t ;1wt,   #   
                                 (4.3) 

 

Then, the  mth  -order deformation equations become  

L 1xmtmxm1th1R1mxm1
 , ym1

 , zm1
 ,wm1


,

L 2ymtmvym1th2R2mxm1
 , ym1

 , zm1
 ,wm1


,

L 3zmtmzm1th3R3mxm1
 , ym1

 , zm1
 ,wm1


,

L 4wmtmwm1th4R4mxm1
 , ym1

 , zm1
 ,wm1


.   #   

          (4.4) 

where  

R1mxm1
 , ym1

 , zm1
 ,wm1


Dt

1 xm1 ym1 ,

R2mxm1
 , ym1

 , zm1
 ,wm1


Dt

2 ym1 xm1 
i0

m1


i0

i

zjzijym1i,

R3mxm1
 , ym1

 , zm1
 ,wm1


Dt

3zm1 b1ym1 b2zm1 b3wm1 ,

R4mxm1
 , ym1

 , zm1
 ,wm1


Dt

4 wm1 zm1 cwm1 .
 

The systems  4.4  have the following general solutions  

xmtm h1xm1th1J1axm1 ym1m 11h1xm1 ,

ymtm h2ym1th2J2
i0

m1


i0

i

zjzijym1i xm1m 1h2ym1 ,

zmtm h3zm1th3J3b1ym1 b2zm1 b3wm1m 1h3zm1 ,

wmtm h3wm1th4J4zm1 cwm1m 1h4wm1 .

  #   

  #   

  #   

  #   
       (4.5) 

In this case, where  x0  ,  y0   ,  z0   and  w0   are constant, the general solution (4.5) is taking the following form 
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xt1 
m1



xmt,

yt2 
m1



ymt,

zt3 
m1



zmt,

wt4 
m1



wmt.

  #   

  #   

  #   

  #   

                                          (4.6) 

Substituting from  )2.1(   into  4.5  , and  )6.4(   we have 

x1th1c12 a1t
1 ,

y1th2c21 23
2
t2 ,

z1th3c3b12 b23 b34t
3 ,

w1th4c43 c4t
4 .

 

x2th1c11h12 a1t
1 h1h2c923

2
1t

12 ac5h1
2
2 a1t

21 ,

y2th2c21h21 23
2
t2
h2

2c53
2
1 23

2
t22 h1h2c92 a1t

12 

2h2h323c10b12 b23 b34t
23 ,

z2th3c31h3b12 b23 b34t
3 h2h3b1c101 23

2
t23 

h3h4b3c113 c4t
34 h3

2b2c7b12 b23 b34t
23 ,

w2th4c41h43 c4t

h3h4c11b12 b23 b34t

34 ch4
2c83 c4t

24 .
 

where  

c1 
1

1 1
, c2 

1
2 1

, c3 
1

3 1
, c4 

1
4 1

,c5 
1

21 1
,

c6 
1

22 1
, c7 

1
23 1

, c8 
1

24 1
, c9 

1
1 2 1

, c10 
1

2 3 1
,

c11 
1

3 4 1
.

 

Then the HAM series solution  4.84.11  of the initial-value problem  1.1,1.2  can be given by 

xtx0tx1tx2tx3t. . . . . . .

yty0ty1ty2ty3t. . . . . . .

ztz0tz1tz2tz3t. . . . . . .

wtw0tw1tw2tw3t. . . . . . .  
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To determine the value of  h   we plot the  h  -curves for Eqs.  )64(  .  it is noted that the valid regions of  h   

correspond to the line segments nearly parallel to the horizontal axis. HAM solution for Eqs.  )64(    is not 

effective for larger  t  . In case if we need the solution for  0,20 , then the idea is to divide the interval  ]20,0[   

to subintervals with time step  t    and we get the solution at each subinterval. So we have to satisfy the initial 

condition at each of the subinterval [21] and [23]. Accordingly, the initial values 
00 , yx , 

00 ,wz  will be changed 

for each subinterval, i.e.  xt1

x0 ,yt2


y0   ,  zt3


z0   and  

wt4

w0   and should satisfy the initial conditions  xmt0,    ymt0,    zmt0   and  

wmt0   for all  ,1m   so 

x1th1c12 a1tt1 ,

y1th2c21 23
2
tt2 ,

z1th3c3b12 b23 b34tt3 ,

w1th4c43 c4tt4

 

x2th1c11h12 a1tt1 h1h2c923
2
1tt12 ac5h1

2
2 a1tt21 ,

y2th2c21h21 23
2
tt2

h2
2c53

2
1 23

2
tt22 h1h2c92 a1tt12 

2h2h323c10b12 b23 b34tt23 ,

z2th3c31h3b12 b23 b34tt3 h2h3b1c101 23
2
tt23 

h3h4b3c113 c4tt34 h3
2b2c7b12 b23 b34tt23 ,

w2th4c41h43 c4tth3h4c11b12 b23 b34tt34 ch4
2c83 c4tt24 .

So, the 

solution as follows: 

xt1



m1



xmtt,

yt2



m1



ymtt,

zt2



m1



zmtt

wt3



m1



wmtt.

  #   

  #   

  #   

  #   

                               (4.7) 

Where  
t   starting from  00 t   until  tn T 20,   the solution on every subinterval of equal length  ,t  

the value of the following initial conditions: 

1 xt,2 yt,3 zt,4 wt.
 

By assuming that the new initial condition is the solution in the previous interval, then the initial conditions of this 

interval  ti, ti1  will be as  
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1 xti
i0

9

xiti ti1,     4.17

 

2 yti
i0

9

yiti ti1,     4.18

 

3 zti
i0

9

ziti ti1.     4.19

 

4 wti
i0

9

witi ti1.     4.20

                                  (4.7) 

  

 

Where  1 ,2 ,3   and  4   are the initial conditions in the interval  ti   , ti1.   

 

 5. Results and discussion 

 

The system parameters are given as  ,0.6,0.1,0.1,56.0 321  bbba  and  c 0.8  , with initial state  

)1.0,3.0,1.0,7.0(   throughout the paper. When  1 2 3 4 1  ,  ,14321  hhhh   

then a  D4   integral-order hyperchaotic system is given. And its phase portraits are shown in Figs. 2 and 3.  

Fig. 2: shows the three dimensional ( D3  ) phase portrait of the integral hyperchaotic system, which 

represents the  zyx    space. Fig. 3 depicts the two-dimensional ( D2  ) phase portraits of the system. 

Also, When  1 2 3 4 0.95  , and  h1 h2 h3 h4 1,  then obtained the ( D3  ) 

and ( D2  ) phase portraits of the fractional-order system as hown in Figs. 4 and 5, respectively. These figures 

clear show that the fractional-order hyperchaotic system exhibits chaotic behaviors. Fig. 6. The time wave 

form  xt  and  )(tx


  of the two hyperchaotic systems with different initial conditions, where  

x0 ,y0 , z0 ,w00.7,0.1,0.3,0.1,   and  x0



,y0



, z0



,w0



1.2,0.6,0.8,0.5.  
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Figure 1: - curve of ,, and for 0.95 and 01.0  t  

 

 
 
Fig. 2. 3D phase portrait of an integral-order hyperchaotic system 
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Fig. 3. 2D phase portraits of the integral-order hyperchaotic system. 

 

 
 

 
Fig. 4. 3D phase portrait of the fractional-order hyperchaotic system in Eq. (1.1). 
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Fig. 5. 2D phase portraits of the fractional-order hyperchaotic system in Eq. (1). 

 

 

 
Fig. 6. The time waveform of the two hyperchaotic systems with different initial conditions  
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6. Conclusion 

 
In this work, it is clear how HAM can be applied to a system of FDEs. Moreover, we obtained a family of solutions 

where some of them are specially the solutions obtained by the HPM. Also, HAM yields a very rapid convergence 

series in most cases as indicated by the studied examples, to illustrate the efficiency and accuracy of the method. 

The results show that HAM is powerful mathematical tool for solving systems of linear and nonlinear FDEs, and 

shows that the system  1.1,1.2  displays rich dynamic behaviors, such as hyperchaotic. 
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